
CONSTRUCT MANHOLE ON 450mmØ TANK OVERFLOW PIPE. DECOMMISION AND DISPOSE OF DOWNSTREAM PIPE AND SCOUR PROTECTION WORKS. CONSTRUCT NEW 450mmØ PIPE FROM NEW MANHOLE, ALONG ROAD 43 VERGE, TO NEW WESTERN STORMWATER PIPE.

INCORPORATED AND LOCATED IN A SAFE LOCATION FOR

AMENDMENT DETAILS DRAINAGE CONCEPT IORTH MASTER PLAN - SHEET 3 calibre Α 16-001756-D166+

NODE	CATCHMENT AREA	NET SEWERED AREA (ha)	LOTS	EP UNIT	EP	EQUIVALENT POPULATION	ADWF (I/s)	LOG A	d	PDWF (I/s)	PORTION WET	GWI	DENSITY	Aeff	С	l _{1,2}	F _{size}	F _{containment}	ı	IIF (I/s)	DESIGN FLOW (I/s)
				•	•				•	SI	S 1 CATCHMENT										
1A CLUB				20	20	20															
1A GENERAL			253	3	759	759															
1A	NH1A	20.8	253		779	779	1.6	1.3	3.5	5.7	0.00	0.00	37.45	10.39	0.80	23.00	1.08	1.50	37.32	8.7	14.3
1B	NH1A	7.8	83	3	249	249	0.5	0.9	4.4	2.3	0.00	0.00	31.92	3.60	0.80	23.00	1.22	1.50	41.98	3.4	5.7
1C SLH	NH1A		90	2	180	180															
1C SCHOOL	NH1A			0.2	126	126															
1C GENERAL	NH1A		89	3	267	267															
1C	NH1A	17.5	179		573	573	1.2	1.2	3.6	4.3	0.00	0.00	32.74	8.18	0.80	23.00	1.10	1.50	38.10	7.0	11.3
1D ROCKLEY OVAL	NH1A	0.3		0.25	25	25															
1D	NH1A	7.0	85	3	280	280	0.6	0.8	4.5	2.7	0.00	0.00	40.00	3.61	0.80	23.00	1.23	1.50	42.53	3.4	6.1
1E	NH1A	3.5	41	3	123	123	0.3	0.5	5.4	1.4	0.00	0.00	35.14	1.69	0.80	23.00	1.34	1.50	46.21	1.8	3.2
1G SCHOOL	NH1			0.2	65	65															
1G COMM	NH2	0.4	-	75	32	32															
1G MU	NH2		432	2	864	864															
1G LOTS	NH2		131	3	393	393															
1G SLH	NH3		94	2	188	188															
1G	NH2	33.4	657		1542	1542	3.2	1.5	3.1	10.0	0.00	0.00	46.12	18.54	0.80	23.00	1.02	1.50	35.25	14.6	24.7
1J SLH	NH2		39	2	78	78															
1J GENERAL	NH2		96	3	288	288															
1J	NH2	9.6	135		366	366	0.8	1.0	4.2	3.2	0.00	0.00	37.97	4.85	0.80	23.00	1.19	1.50	40.92	4.4	7.6
1F SLH	NH2		37	2	74	74															
1F GENERAL	NH2		251	3	753	753															
1F	NH2	20.7	288		827	827	1.7	1.3	3.5	6.0	0.00	0.00	39.95	10.68	0.80	23.00	1.08	1.50	37.34	8.9	14.9
1H MU			194	2	388	388															
1H RL			100	1.5	150	150															
1H LOTS			72	3	216	216															
1H	NH2	10.2	366		754	754	1.6	1.0	4.1	6.5	0.00	0.00	74.21	7.15	0.80	23.00	1.18	1.50	40.67	6.5	13.0
1K	NH2	9.3	102	3	306	306	0.6	1.0	4.2	2.7	0.00	0.00	32.80	4.36	0.80	23.00	1.19	1.50	41.08	4.0	6.7
	TOTAL	139.9	2189.0		5799.3	5799.3	12.2	2.1	2.4	28.6	0.00	0.00	41.46	73.54	0.80	23.00	0.86	1.50	29.69	48.9	77.5

NOTES

- . THE SEWER CATCHMENT DATA SHEET 1 AND 2 ABOVE INDICATES THE BASIS FOR THE CONCEPT DESIGN FLOW CALCULATIONS FOLLOWING APPENDIX B FLOW ESTIMATION FOR UNDEVELOPED AREAS OF THE WSA02-2002-2.3 GUIDELINE.
- 2. ASSUME EP=3.5 IF RESIDENTIAL DENSITY IS LESS THAN 15 DWELLINGS PER HECTARE; EP=2.5 IF RESIDENTIAL DENSITY IS MORE THAN 15 DWELLINGS PER HECTARE. GOOGONG COMMON IS ASSUMED TO ONLY HAVE A SEWERED NET AREA FOR BUILDINGS LOCATED WITHIN THE GOOGONG COMMON
- 3. THE PORTION_{WET} (THE PORTION OF SEWAGE SYSTEM IS BELOW GROUNDWATER TABLE LEVELS) IS 0% BASED ON GOOGONG GEOTECHNICAL/GROUNDWATER LEVEL INFORMATION OBTAINED ON SITE. GEOTECHNICAL INVESTIGATION INDICATES GROUNDWATER TABLE IS VERY DEEP IN GOOGONG.
- 4. I_{23} IS 1 HOUR RAINFALL INTENSITY OF 2 YEARS ARI. THE DESIGN USES 23 WHICH IS APPROXIMATE VALUES OF INTENSITY FOR CANBERRA LOCATION.
- 5. THE DESIGN ADOPTS F_{CONTAINMENT} AS 1.5 WHICH REPRESENTS 1 IN 10 YEARS AR OF SEWAGE OVERFLOW. THIS DESIGN CRITERIA MEETS QUEANBEYAN PALERANG REGIONAL COUNCIL'S REQUIREMENTS OF 1 IN 10 YEARS OVERFLOW RECURRENCE INTERVAL.
- 6. ASSUME THE IF LEAKAGE SEVERITY COEFFICIENT (C) IS 0.8 BASED ON SOIL AND NETWORK ASPECT CONTRIBUTOR TO LEAKAGE.
- ASSUME COMMERCIAL TOWN CENTRE AREA IN NEIGHBOURHOOD 2 IS THE STANDARD LOCAL COMMERCIAL AREA WITH 75 EP/Ha AND IMPERVIOUS AREA IS 70%.
- 8. ASSUME AVERAGE SIZE OF SINGLE OCCUPANCY LOTS OF NEIGHBOURHOOD 2 IS 500m', NUMBER OF LOTS = 0.7*GROSS HECTARES*10,000 $\overline{500m} (AVERAGE AREA IN m OF A SINGLE OCCUPANCY LOT)$ THEN THE NUMBER OF LOTS * 3 EP.

- 9. THE ESTIMATES OF TOTAL NUMBER OF STUDENTS AT THE PROPOSED PRIVATE AND PUBLIC PRIMARY SCHOOLS IN NEIGHBOURHOOD 1A ARE 630 STUDENTS RESPECTIVELY AND 0.2 EP/STUDENT, IMPERVIOUS AREA OF LOCAL PRIMARY SCHOOLS IS 70%. (ESTIMATED NUMBER OF SCHOOL STUDENTS IS BASED ON 'GOOGONG ESTIMATED NUMBER OF SCHOOL STUDENTS' BY ELTON CONSULTING ISSUED ON AUGUST 2009).
- 10. PRIVATE HIGH SCHOOL IN NEIGHBOURHOOD 2 SHOULD HAVE CAPACITY FOR UP TO 650 STUDENTS (0.2 EP/STUDENT), IMPERVIOUS AREA OF HIGH SCHOOLS IS 70%. THE HIGH SCHOOL IN NEIGHBOURHOOD 2 IS ASSUMED TO BE EQUALLY DIVIDED BETWEEN SPS1 AND SPS2 CATCHMENT AREAS.
- 11. ASSUME PVC PIPE SHALL BE USED FOR SEWER PIPES, THEREFORE PIPE ROUGHNESS n=0.012.
- $12. \quad \text{NODE 2Q INCLUDES NEIGHBOURHOOD 3, FUTURE HAMSON DEVELOPMENT AND EXCLUDES SBSTATION LOCATION} \\$
- 13. HAMLET EAST, WEST AND TALPA ARE IN THE PUMP STATION 1 CATCHMENT.
- 14. THE TABLES ARE FOR THE PURPOSE OF PIPE SIZING ONLY AND NOT TO CALCULATE PUMP STATION CAPACITY.

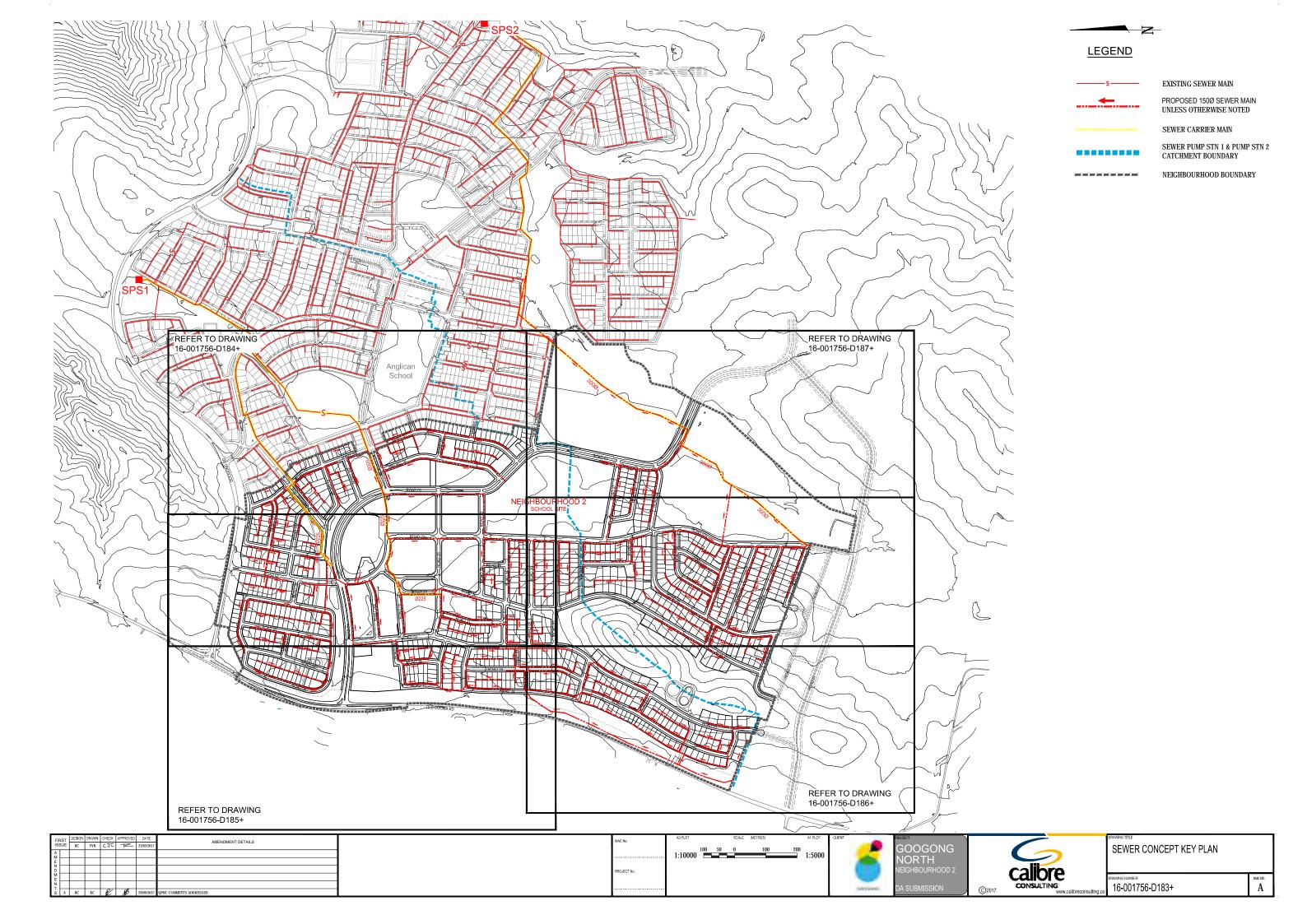
СНЕСК	CONTRIBUTING NODES	INITIAL EP	CONTRIBUTING EP	TOTAL EP	INITIAL PDWF (L/s)	CONTRIBUTING PDWF (L/s)	TOTAL PDWF (L/s)	INITIAL FLOW (L/s)	CONTRIBUTING FLOW (L/s)	TOTAL FLOW (L/s)	MINIMUM SEWER PIPE	DESIGNED SEWER CARRIER	DESIGNED SEWER CAPACITY (L/s)	MINIMUM VS DESIGNED	
	SPS 1 CATCHMENT														
1	1K, 1J	0.00	672.00	672.00	0.00	5.90	5.90	0.00	14.37	14.37	225mm DIA @ minimum 0.1%	225mm DIA @ minimum 1%	48.64	ОК	
2	1H	672.00	754.00	1426.00	5.90	6.51	12.42	14.37	13.02	27.39	225mm DIA @ minimum 0.3%	225mm DIA @ minimum 1%	48.64	ОК	
3	1G, 1E	1426.00	1602.25	3028.25	12.42	9.71	22.12	27.39	27.01	54.40	275mm DIA @ minimum 0.5%	300mm DIA @ minimum 1%	104.76	ОК	
4	1F,1D,1C	3028.25	1680.00	4708.25	22.12	1.40	23.52	54.40	32.35	86.75	300mm DIA @ minimum 0.7%	300mm DIA @ minimum 1%	104.76	ОК	

FIE	RST	DESIGN	DRAWN	CHECK	APPROVED	DATE	AMENDMENT DETAILS
IS	SUE	BC	VVB	CIC	F	23/03/2017	AMENDINENT DETAILS
A M							
Е							
N D							
M E							
N							
S	A	BC	KC	K	NB	29/09/2017	QPRC COMMENTS ADDRESSED

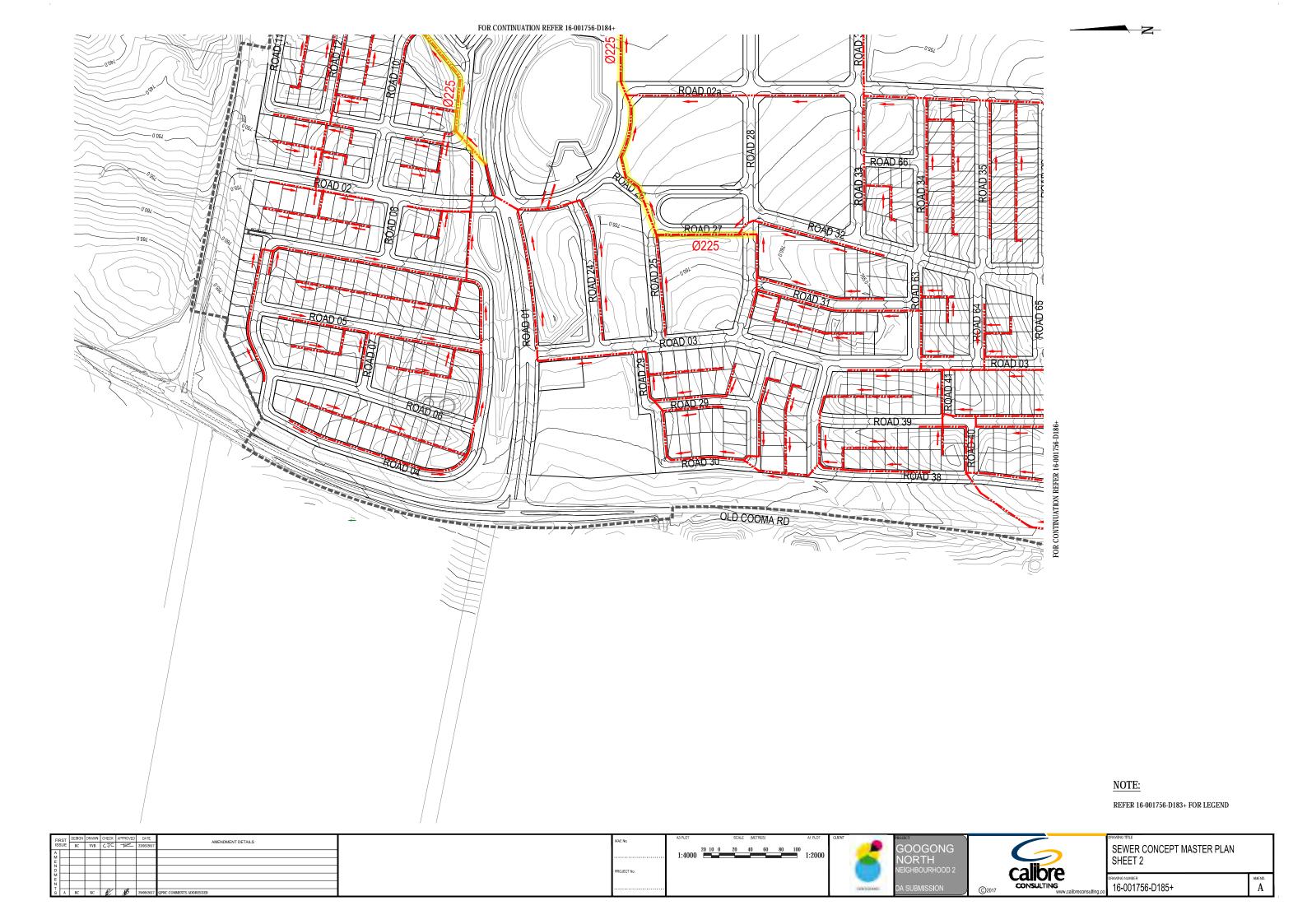
WAE No.

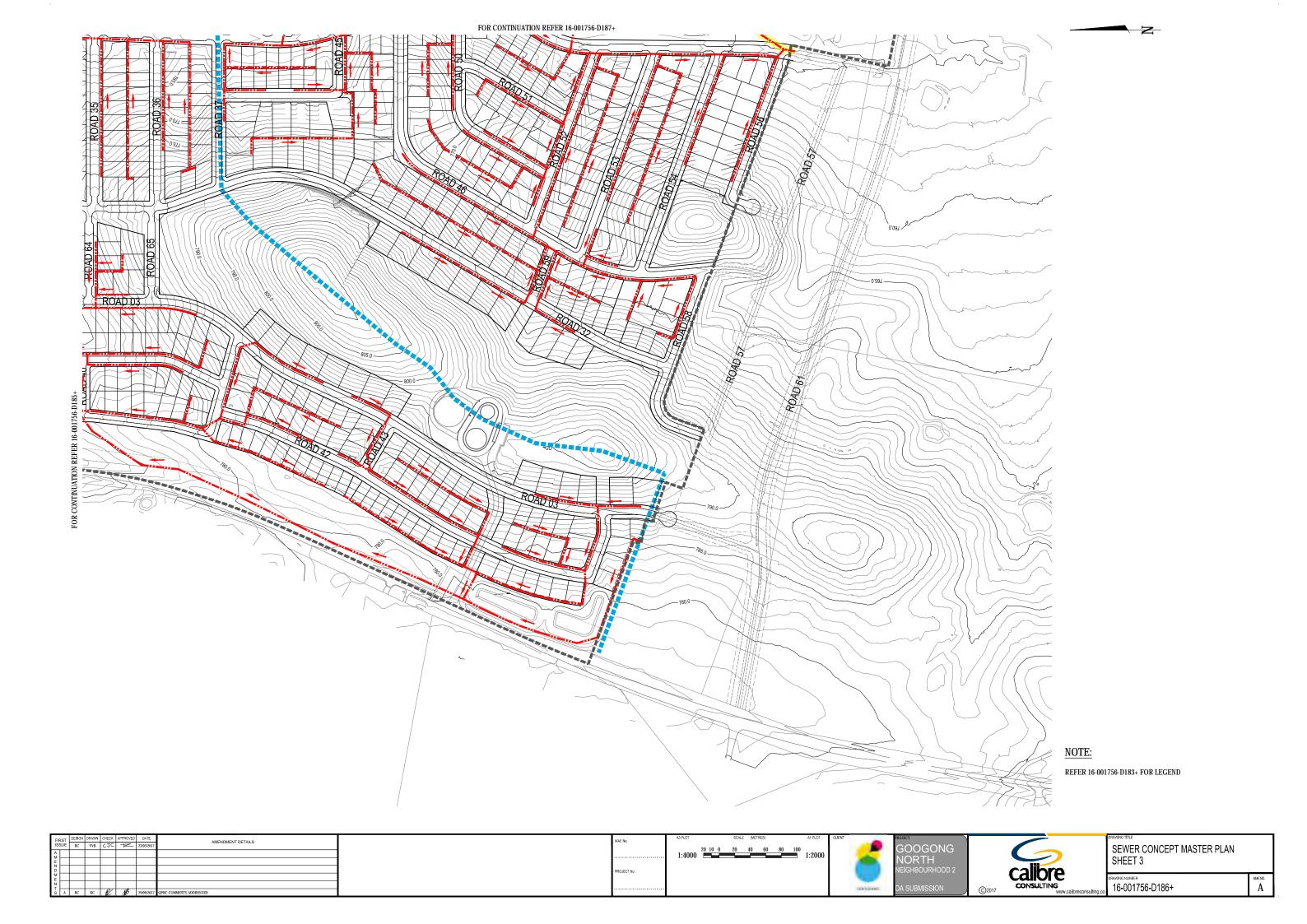
GOOGONG TOWNSHIP SEWER
CATCHMENT DATA SHEET 1 OF 2

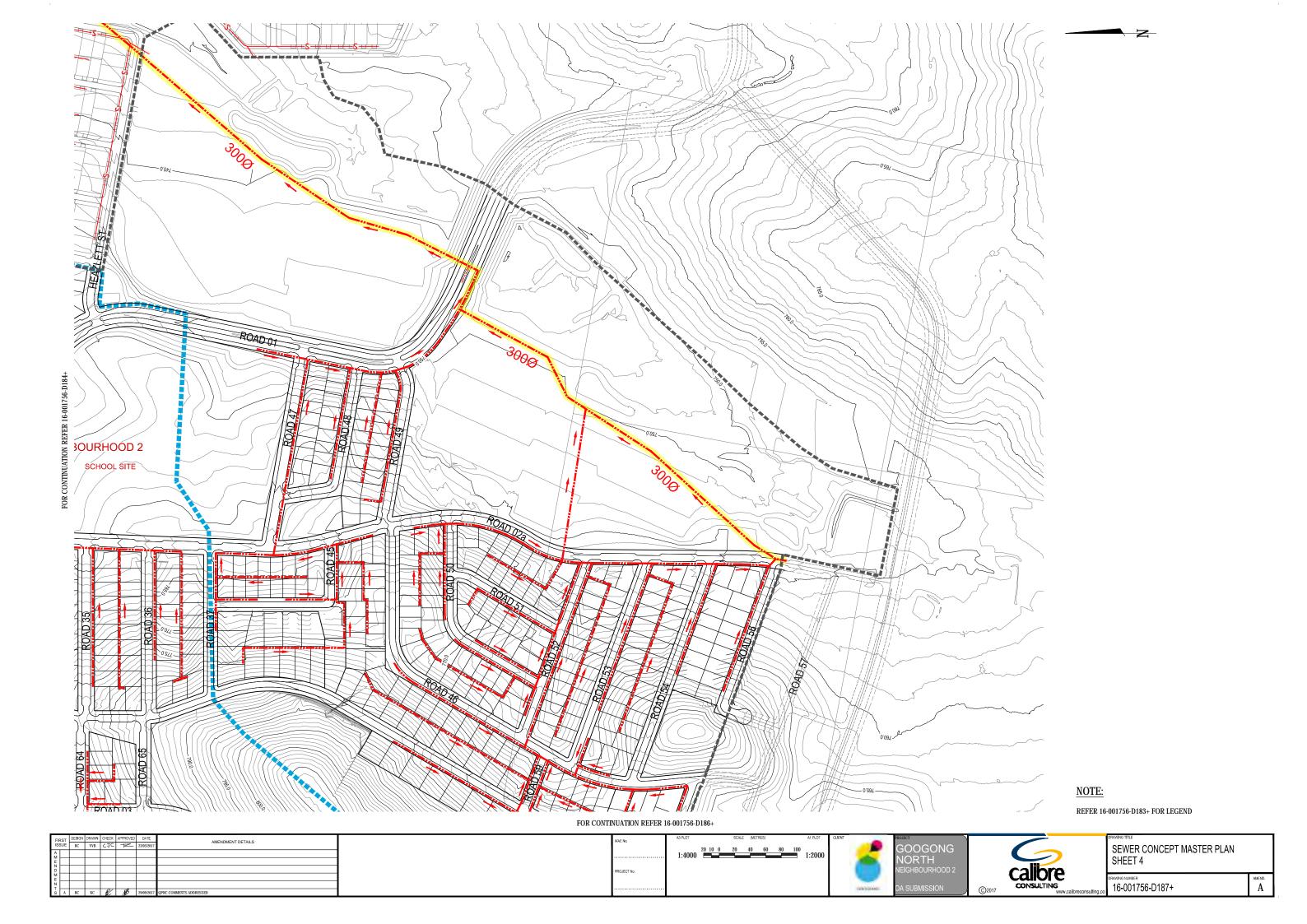
DRAWING NUMBER 16-001756-D181+


	AREA	SEWERED AREA (ha)	LOTS	EP UNIT	EP	POPULATION	(I/s)	LOG A	d	POWF (Vs)	PORTION WET	GWI	DENSITY	Aeff	c	11,2	Faire	Foortanment	- 5	IIF (I/e)	FLOW (I/s)
		Transcriptor!									SPS 2 CATCHME	NT	-					-			111.00
2A	NH1B	58.2	350	-3	1050	1050	2.21	1.76	2.78	6.08	0,00	0.00	18.04	20.18	0.80	23.00	0.96	1.50	32.98	14.91	21.00
2B	NH1B	20.0	237	3	711	711	1,49	1,30	3.49	5.21	0.00	0.00	35.62	9.73	0.80	23.00	1.09	1.50	37.50	8.17	13.38
=47E1	DHEX		- 00	3	- 34	100															
SHITTED IN	1071		76	30	- 10					1000					1000			1		10.5	
2C	NHTA	17.9	98		294	294	0.62	1,25	3,58	221	0,00	0.00	16.42	5.92	0.80	23.00	1 10	1.50	37.99	5.04	7.25
June 1	Table Av			3.1	- 2																
BEN.	tmta		7		-100	700															
			38.	100	-34															-	
20	NH1A	22.6	280		891	891	1,87	1,35	3,39	6.34	0.00	0.00	39,41	11,59	06.0	23.00	1:07	1.50	36.94	9.59	15.93
-	100	20	2	31	-0																
3,50	0		- 0	131																	
200	-0.00		2		29	-04			100			-								-	
2E	NH1A	6.8	91		279	279	0.50	0.83	4.56	2,67	0,00	0.00	41,24	3.54	0.80	23.00	1.24	1.50	42.70	3.39	6.06
2F	NHIA	7.8	141	3	423	423	0.89	0.89	4.40	3.91	0.00	0.00	54.23	4.69	0.80	23,00	1.22	1.50	41.98	4.41	8.32
26	NHIA	5.7	63	3	189	189	0.40	0.83	4.57	1.82	0.00	0.00	28,21	2.91	0.80	23.00	1.24	1.50	42.75	2.78	4.60
40			- 11		- 57													4		-	
-	10000		14000	1	-					1000			WW-92	-		2000		-		-	-
2H	NH1A	10.0	128		353	353	0.74	1,00	4.13	3.06	0.00	0.00	35.30	4.85	0.80	23.00	1.18	1.50	40.74	4.43	7.49
2.1	NH2	5.1	47	3	141	141	0.30	0.71	4,90	1.45	0.00	0.00	27.54	2.19	0.80	23.00	1.28	1.50	44.15	2.17	3.62
2K.	NH2	7.5	96	3	288	288	0.60	0.88	4.44	2.69	0,00	0.00	38,40	3.79	0.90	23.00	1.22	1.50	42.18	3,58	6,27
2L	NH2	3.0	55	3	185	165	0.35	0.48	5.65	1.96	0.00	0.00	55.00	1.82	0.80	23.00	1.36	1.50	47.08	1.92	3.87
2M	NH2 NH2	2.7	19	3	71	71	0.15	0.42	5.83	0.86	0.00	0.00	26.57	1.12	06.0	23.00	1.38	1.50	47.77	1.20	2.06
2N	NH4	78.6	87	3	326	326 3364	0.68	7.90	3.96	2.71	0.00	0.00	27,68 42,63	5.06	0,80	23.00	0.92	1.50	39.95	4.53	7.24
20 2P	NHS	88.6	1100	3	3701	3701	7.07	3/70	100000000000000000000000000000000000000	1111111	2144	-5157	- 0.02	46.22	0.80	100000	0.91	1.50	31.45	29.92	48.30
	NH3	_	1212	3	-		7,77	1,94	2.56	19.87	0.00	0.00	42.75			23.00	-	1.50		32.58	52.42
20	INIT.	413	579	3	1801	1801	3.78	1.62	2.90	11.20	0.00	0.00	43,57	22.28	0.80	23.00	1.00	1.00	34.35	17,15	28,35
	TOTAL	396.5	4582.5		14046.8	14046.8	29.50	2.59	2.04	60.25	0.00	0.00	36.35	190.24	0.80	23.00	0.76	1.50	26.28	111.98	172.23

онеск	CONTRIBUTING NODES	INITIAL EP	CONTRIBUTING EP	TOTALES	INITIAL POWE (L/s):	CONTRIBUTING POWY (L/s)	TOTAL PDWF (L/A)	HIMAL FLOW (I/A)	CONTRIBUTING PLOW (L/h)	TOTAL FLOW (L/s)	MINIMUM SEWES PIPE	DESIGNED SEWER CARRIER	SEWER CAPACITY (L/S)	MINIMUM VS DESIGNED
							585 2 C	TCHNENT						
1	2012	20.00	1065 ào	1948 (#	ano	13.16	13.26	o.m	12.22	111.72	225mm DFA@	minimum Pk	104.76	(2)
1	2K, 2J, 2M	1965.86	499.60	2465,46	13.16	5.00	18.16	32.22	11.95	34.17	225mm DAA@ minimum G.8%	Minimum To	101.76	ox.
1	294	2465.46	317.00	2782.46	18.1a	2.58	20.74	44.17	7.20	5138	279mm DIA 69 minimum 0,366	Minimum Ille	104.76	òk.
4	26	2782.06	257.00	3134.46	20.74	2.47	23,16	11.35	513	57,00	275mm DA @ minimum 0.5%	300mm DIA (I) minimum TW	104.76	O.F
5	25	3034.46	423.00	3457.46	23.16	3.51	17.07	57.01	8.32	65,33	RATE TO A STATE OF THE STATE OF	300mm DIA @	10476	OK.
6	24, 26	3457.46	631.75	4089.21	27.07	5.73	32.80	65.33	13.55	73.88	300mm DIA@	300mm DIA @	104.76	QK.


<u>NOTE</u>


REFER 16-001756-D181+ FOR NOTES


FIRST ISSUE	BC VVB CJC TE 23/03/2017	AMENDMENT DETAILS	WAE No.	A3 PLOT	SCALE (METRES) A1 PLOT	CLIENT	PROJECT		GOOGONG TOWNSHIP SEWER	
A M E							NORTH		CATCHMENT DATA SHEET 2	
M E			PROJECT No.				NEIGHBOURHOOD 2	calibre ENSULTING	DRAIVING NUMBER	AMEND.
N T S A	BC KC & 16 29/09/2017 QPI	PRC COMMENTS ADDRESSED				some	DA SUBMISSION	©2017 CONSULTING www.calibreconsulting.	_∞ 16-001756-D182+	A

